ECE180DA (Winter 2025) Systems Design I

Lecture 1: Getting started January 7, 2025

Today's agenda

About us

2 About this course

3 Design as a core principle

4 Course organization

January 7, 2025

My history

- PhD research in:
 - MEMS process development, devices, and systems
 - Micro autonomous air vehicles localization and control
 - Wireless communications protocols and hardware
- Postdoctoral research in:
 - Integrated robotic design and design automation
 - Functional specification of robotics
 - Robotics for education
- Other interests:
 - Ultimate frisbee, roller skating
 - Puzzle hunts, board games, elementary school art

My history

- PhD research in:
 - MEMS process development, devices, and systems
 - Micro autonomous air vehicles localization and control
 - Wireless communications protocols and hardware
- Postdoctoral research in:
 - Integrated robotic design and design automation
 - Functional specification of robotics
 - Robotics for education
- Other interests:
 - Ultimate frisbee, roller skating
 - Puzzle hunts, board games, elementary school art

My history

- PhD research in:
 - MEMS process development, devices, and systems
 - Micro autonomous air vehicles localization and control
 - Wireless communications protocols and hardware
- Postdoctoral research in:
 - Integrated robotic design and design automation
 - Functional specification of robotics
 - Robotics for education
- Other interests:
 - Ultimate frisbee, roller skating
 - Puzzle hunts, board games, elementary school art

The Laboratory for Embedded Machines and Ubiquitous Robotics

https://uclalemur.com

- Overarching research interests:
 - How do we enable robots everywhere?
 - What can we do once we have that?
- Projects:
 - Democratization of engineering
 - Accessible printable robots
 - Mechanical intelligence
 - Distributed state estimation, localization, mapping
 - Robotics for education and art

The Laboratory for Embedded Machines and Ubiquitous Robotics

https://uclalemur.com

- Overarching research interests:
 - How do we enable robots everywhere?
 - What can we do once we have that?
- Projects:
 - Democratization of engineering
 - Accessible printable robots
 - Mechanical intelligence
 - Distributed state estimation, localization, mapping
 - Robotics for education and art

About your TA

Anwesha Chattoraj

4th-year PhD student (ECE department)

Research interests: Modelling the nonlinear dynamics of soft robots, in particular membrane based actuators

Things I like to do in my free time: read, swim/run, salsa, and collect random hobbies

About you

Tell us who you are! Due this Thursday (two days from now!) at 11am:

- Public introduction slides
 - One slide about you personally
 - Two possible final project ideas driven by your personal interests
 - Upload PDF slides to Bruinlearn
 - Will be presented live during Thursday's class

Today's agenda

About us

2 About this course

3 Design as a core principle

4 Course organization

ECE180: Systems Design

- This class is about design:
 - Planning
 - Analysis
 - Validation
 - Communication
- This class is (mostly) not:
 - Hacking
 - Book problems
 - Product development

ECE180: Systems Design

- This class is about design:
 - Planning
 - Analysis
 - Validation
 - Communication
- This class is (mostly) not:
 - Hacking
 - Book problems
 - Product development

In decreasing order of impact:

- Learn the design process, i.e. how to successfully plan, execute, and present a meaningful engineering project
- Learn tools and skills relevant to project management
- Reinforce engineering skills learned from your past classes
- Learn tools and skills relevant to integrated systems

In decreasing order of impact:

- Learn the design process, i.e. how to successfully plan, execute, and present a meaningful engineering project
- Learn tools and skills relevant to project management
- Reinforce engineering skills learned from your past classes
- Learn tools and skills relevant to integrated systems

In decreasing order of impact:

- Learn the design process, i.e. how to successfully plan, execute, and present a meaningful engineering project
- Learn tools and skills relevant to project management
- Reinforce engineering skills learned from your past classes
- Learn tools and skills relevant to integrated systems

In decreasing order of impact:

- Learn the design process, i.e. how to successfully plan, execute, and present a meaningful engineering project
- Learn tools and skills relevant to project management
- Reinforce engineering skills learned from your past classes
- Learn tools and skills relevant to integrated systems

ABET goals

- An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
- An ability to communicate effectively with a range of audiences
- An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- An ability to acquire and apply new knowledge as needed, using appropriate learning strategies

- 4 unit class = 12 hrs commitment per week
- Winter term
 - In-class lectures, lab activities, project presentations: 6 hrs
 - Additional commitments: ~6 hrs
 - Lab and project work & planning
 - Self directed study
 - Communication
- Spring term
 - Final project execution: ~10 hr
 - Meeting with staff: ~0.5 hr
 - Both scheduled and ad-hoc "board meetings"
 - Weekly progress reports presented to the class

Peer assessment: ~1.5 hr

- 4 unit class = 12 hrs commitment per week
- Winter term
 - In-class lectures, lab activities, project presentations: 6 hrs
 - Additional commitments: ~6 hrs
 - Lab and project work & planning
 - Self directed study
 - Communication
- Spring term
 - Final project execution: ~10 hr
 - Meeting with staff: ~0.5 hr
 - Both scheduled and ad-hoc "board meetings"
 - Weekly progress reports presented to the class
 - Peer assessment: ~1.5 hr

- 4 unit class = 12 hrs commitment per week
- Winter term
 - In-class lectures, lab activities, project presentations: 6 hrs
 - Additional commitments: ~6 hrs
 - Lab and project work & planning
 - Self directed study
 - Communication
- Spring term
 - Final project execution: ~10 hr
 - Meeting with staff: ~0.5 hr
 - Both scheduled and ad-hoc "board meetings"
 - Weekly progress reports presented to the class

Peer assessment: ~1.5 hr

- 4 unit class = 12 hrs commitment per week
- Winter term
 - In-class lectures, lab activities, project presentations: 6 hrs
 - Additional commitments: ~6 hrs
 - Lab and project work & planning
 - Self directed study
 - Communication
- Spring term
 - Final project execution: ~10 hr
 - Meeting with staff: ~0.5 hr
 - Both scheduled and ad-hoc "board meetings"
 - Weekly progress reports presented to the class

• Peer assessment: $\sim 1.5 \text{ hr}$

- In-class lectures
 - Deliverables (design reviews)
 - Design process and mindset
 - Guest lectures?
- Auxilliary lecture videos
 - Engineering and society ("guest lecture")
 - How to present
 - Formal design / design for debugging
- Supplementary reference videos
 - Detailed design lectures

Videos are available on our course website:

https://capstone.uclalemur.com

All project assignments are available right now on our course git server:

 https://git.capstone.uclalemur.com/ staff/project-assignments

Suggested pacing given there, feel free to peek ahead

- In-class lectures
 - Deliverables (design reviews)
 - Design process and mindset
 - Guest lectures?
- Auxilliary lecture videos
 - Engineering and society ("guest lecture")
 - How to present
 - Formal design / design for debugging
- Supplementary reference videos
 - Detailed design lectures

Videos are available on our course website:

https://capstone.uclalemur.com

All project assignments are available right now on our course git server:

 https://git.capstone.uclalemur.com/ staff/project-assignments

Suggested pacing given there, feel free to peek ahead

- In-class lectures
 - Deliverables (design reviews)
 - Design process and mindset
 - Guest lectures?
- Auxilliary lecture videos
 - Engineering and society ("guest lecture")
 - How to present
 - Formal design / design for debugging
- Supplementary reference videos
 - Detailed design lectures

Videos are available on our course website:

https://capstone.uclalemur.com

All project assignments are available right now on our course git server:

 https://git.capstone.uclalemur.com/ staff/project-assignments

Suggested pacing given there, feel free to peek ahead

- In-class lectures
 - Deliverables (design reviews)
 - Design process and mindset
 - Guest lectures?
- Auxilliary lecture videos
 - Engineering and society ("guest lecture")
 - How to present
 - Formal design / design for debugging
- Supplementary reference videos
 - Detailed design lectures

Videos are available on our course website:

https://capstone.uclalemur.com

All project assignments are available right now on our course git server:

 https://git.capstone.uclalemur.com/ staff/project-assignments

Suggested pacing given there, feel free to peek ahead

Mini-project lab

- Minimal subproblem selected from project plan
 - Make a simple design decision, with known/easily discoverable dependencies
 - Develop experiments to support design process
 - \bullet Explore variety of modeling / prototyping tools
 - Analytical computation
 - Simulation
 - Physical experiments
- Lab objectives:
 - Optimize design process steps
 - Establish good project management habits
 - Accurately schedule upcoming project plan

Mini-project lab

- Minimal subproblem selected from project plan
 - Make a simple design decision, with known/easily discoverable dependencies
 - Develop experiments to support design process
 - Explore variety of modeling / prototyping tools
 - Analytical computation
 - Simulation
 - Physical experiments
- Lab objectives:
 - Optimize design process steps
 - Establish good project management habits
 - Accurately schedule upcoming project plan

Final project

- Formulate, design, justify, evaluate, and present an engineered system solution for a real-world problem
- Open-ended definition but must include:
 - Computation for processing / intelligence
 - Physical embodiment
 - System integration to address application needs
 - Quantitative evaluations and comparative analysis
 - Impact assessment
- Problem selection and definition is the core objective of 180DA

Final project

- Formulate, design, justify, evaluate, and present an engineered system solution for a real-world problem
- Open-ended definition but must include:
 - Computation for processing / intelligence
 - Physical embodiment
 - System integration to address application needs
 - Quantitative evaluations and comparative analysis
 - Impact assessment
- Problem selection and definition is the core objective of 180DA

Course communication

Three main sites to keep in mind:

- Class website: https://capstone.uclalemur.com
- Bruinlearn: https://bruinlearn.ucla.edu/courses/199210
- Gitlab repository: https://git.capstone.uclalemur.edu

Everything official from us will be handled via these websites:

- Announcements
- Handouts
- Assignments

Make sure your email address is correct, and check email regularly.

High level notes

- This class is a bridge between student life and an engineering career
- We want your experience to be valuable and enjoyable
- Feedback is encouraged and always welcome
- This class is likely to evolve over the course of the year

Questions?

Any questions on the administrivia?

January 7, 2025

Today's agenda

About us

2 About this course

3 Design as a core principle

4 Course organization

Not design: Coursework

- Problem set
 - Given: tool, problem
 - Do: apply tool to problem
 - Goal: answer to problem
- Exam
 - Given: collection of tools, problem
 - Do: choose appropriate tool, apply to problem
 - Goal: answer to problem
- Fundamental question:
 - Here's a problem, how do you solve it?

Not design: Coursework

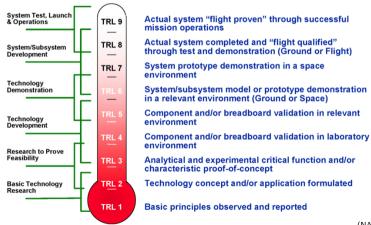
- Problem set
 - Given: tool, problem
 - Do: apply tool to problem
 - Goal: answer to problem
- Exam
 - Given: collection of tools, problem
 - Do: choose appropriate tool, apply to problem
 - Goal: answer to problem
- Fundamental question:
 - Here's a problem, how do you solve it?

Not design: Coursework

- Problem set
 - Given: tool, problem
 - Do: apply tool to problem
 - Goal: answer to problem
- Exam
 - Given: collection of tools, problem
 - Do: choose appropriate tool, apply to problem
 - Goal: answer to problem
- Fundamental question:
 - Here's a problem, how do you solve it?

Design

- Fundamental questions:
 - What is a problem worth solving?
 - Why would a solution be meaningful?
- Design
 - Given: real world (universe of tools, universe of problems)
 - Do: identify requirements, capabilities, and dependencies of problems and tools
 - Goal: validate optimality of problem + tool combination


January 7, 2025 15/42

Design

- Fundamental questions:
 - What is a problem worth solving?
 - Why would a solution be meaningful?
- Design
 - Given: real world (universe of tools, universe of problems)
 - Do: identify requirements, capabilities, and dependencies of problems and tools
 - Goal: validate optimality of problem + tool combination

January 7, 2025 15/42

Design process metric: Technology Readiness Level (TRL)

(NASA / source unknown)

Also not design (*)

- Product development (TRL 7+)
 - Given: validated design (plan)
 - Do: implement the solution according to the plan
 - Goal: complete functional product
- Hacking
 - Given: tools
 - Do: implement and apply tools
 - Goal: answer to a problem? experience, intuition, new ideas

January 7, 2025 17/42

Also not design (*)

- Product development (TRL 7+)
 - Given: validated design (plan)
 - Do: implement the solution according to the plan
 - Goal: complete functional product
- Hacking
 - Given: tools
 - Do: implement and apply tools
 - Goal: answer to a problem? experience, intuition, new ideas

January 7, 2025 17/42

Also not design (*)

- Product development (TRL 7+)
 - Given: validated design (plan)
 - Do: implement the solution according to the plan
 - Goal: complete functional product
- Hacking
 - Given: tools
 - Do: implement and apply tools
 - Goal: answer to a problem? experience, intuition, new ideas

January 7, 2025 17/42

Design

- Fundamental questions:
 - What is a problem worth solving?
 - Why would a solution be meaningful?
- Design
 - Given: real world (universe of tools, universe of problems)
 - Do: identify requirements, capabilities, and dependencies of problems and tools
 - Goal: validate optimality of problem + tool combination

January 7, 2025 18/42

Solving real-world problems

technologies \rightarrow solution \rightarrow application := project

The design process ensures that the **best** technologies are engineered in the **best** way to address the **best** problem.

... and optimizes resource usage along the way

January 7, 2025 19/42

Solving real-world problems

technologies \rightarrow solution \rightarrow application := project

The design process ensures that the **best** technologies are engineered in the **best** way to address the **best** problem.

... and optimizes resource usage along the way

January 7, 2025 19/42

Solving real-world problems

technologies \rightarrow solution \rightarrow application := project

The design process ensures that the **best** technologies are engineered in the **best** way to address the **best** problem.

... and optimizes resource usage along the way

January 7, 2025 19/42

Validation

- What constitutes support that a problem is "best"?
 - Market research
 - User interviews
 - Experimentation / analysis
 - ...
- What constitutes support that technologies and assemblies are "best"?
 - Industrial / academic research
 - Modeling / simulation
 - Experimentation / analysis
 -

Validation

- What constitutes support that a problem is "best"?
 - Market research
 - User interviews
 - Experimentation / analysis
 - . . .
- What constitutes support that technologies and assemblies are "best"?
 - Industrial / academic research
 - Modeling / simulation
 - Experimentation / analysis
 - ...

Comparative analysis

Isolated evaluations are not enough

- Identify candidates and alternatives
- Determine the metric / figure of merit (FOM)
- Select evaluation methods
 - Literature search
 - Analysis
 - Prototyping
- Execute the method to validate a choice based on FOM

Comparative analysis

Isolated evaluations are not enough

- Identify candidates and alternatives
- Determine the metric / figure of merit (FOM)
- Select evaluation methods
 - Literature search
 - Analysis
 - Prototyping
- Execute the method to validate a choice based on FOM

Comparative analysis

Isolated evaluations are not enough

- Identify candidates and alternatives
- Determine the metric / figure of merit (FOM)
- Select evaluation methods
 - Literature search
 - Analysis
 - Prototyping
- Execute the method to validate a choice based on FOM

Potential pitfalls

- Don't assume the answer going in
 - Evaluate to eliminate, not justify—Don't stop when you've found supporting evidence, only stop once you've exhausted all possible counterpoints.
- Process is more important than product
 - Minimum effort for maximum value (as defined by validity of FOM justification)
 - In particular, don't build what you don't have to
- Leave any preconceived expectations at the door
- If you don't analyze and validate your choice of technologies, solution, and application, you're going to have a bad time.

Potential pitfalls

- Don't assume the answer going in
 - Evaluate to eliminate, not justify—Don't stop when you've found supporting evidence, only stop once you've exhausted all possible counterpoints.
- Process is more important than product
 - Minimum effort for maximum value (as defined by validity of FOM justification)
 - In particular, don't build what you don't have to
- Leave any preconceived expectations at the door
- If you don't analyze and validate your choice of technologies, solution, and application, you're going to have a bad time.

Potential pitfalls

- Don't assume the answer going in
 - Evaluate to eliminate, not justify—Don't stop when you've found supporting evidence, only stop once you've exhausted all possible counterpoints.
- Process is more important than product
 - Minimum effort for maximum value (as defined by validity of FOM justification)
 - In particular, don't build what you don't have to
- Leave any preconceived expectations at the door
- If you don't analyze and validate your choice of technologies, solution, and application, you're going to have a bad time.

Potential failure

- Inappropriate application
 - Google glass: Pervasive (wearable) vision-based computing
- Inappropriate technology
 - Nintendo Virtual Boy: Monochrome stereo-vision display
- Inappropriate matching of technology to application
 - Kodak (eventually): Light sensitive film for personal photography
- Inappropriate solution integration
 - Blackberry: pocket computer for personal computing via keypad

https://www.pbs.org

Potential failure

- Inappropriate application
 - Google glass: Pervasive (wearable) vision-based computing
- Inappropriate technology
 - Nintendo Virtual Boy: Monochrome stereo-vision display
- Inappropriate matching of technology to application
 - Kodak (eventually): Light sensitive film for personal photography
- Inappropriate solution integration
 - Blackberry: pocket computer for personal computing via keypad

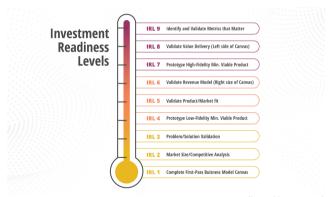
https://www.pbs.org

Potential failure

- Inappropriate application
 - Google glass: Pervasive (wearable) vision-based computing
- Inappropriate technology
 - Nintendo Virtual Boy: Monochrome stereo-vision display
- Inappropriate matching of technology to application
 - Kodak (eventually): Light sensitive film for personal photography
- Inappropriate solution integration
 - Blackberry: pocket computer for personal computing via keypad

https://www.pbs.org

Potential failure


- Inappropriate application
 - Google glass: Pervasive (wearable) vision-based computing
- Inappropriate technology
 - Nintendo Virtual Boy: Monochrome stereo-vision display
- Inappropriate matching of technology to application
 - Kodak (eventually): Light sensitive film for personal photography
- Inappropriate solution integration
 - Blackberry: pocket computer for personal computing via keypad

https://www.pbs.org

Tech startup


- Acquire funding to move up the TRI ladder
- Justify investment via extensive planning
- Results are generated to validate process
- Prove value of engineering team

(https://gongos.com)

Tech startup

- Acquire funding to move up the TRI ladder
- Justify investment via extensive planning
- Results are generated to validate process
- Prove value of engineering team

(https://gongos.com)

Funding roadmap

Today's agenda

About us

2 About this course

3 Design as a core principle

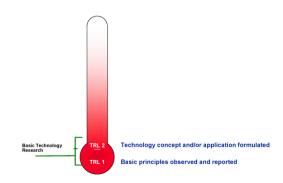
4 Course organization

Progress milestones

- Align course objectives with design process / TRL metrics
- Periodic deliverables
 - Scoping, design reviews, plans, milestones
- Endpoint deliverables
 - Artifacts, demonstrations, presentations, writeups
- Mimic tech startup

Progress milestones

- Align course objectives with design process / TRL metrics
- Periodic deliverables
 - Scoping, design reviews, plans, milestones
- Endpoint deliverables
 - Artifacts, demonstrations, presentations, writeups
- Mimic tech startup


Progress milestones

- Align course objectives with design process / TRL metrics
- Periodic deliverables
 - Scoping, design reviews, plans, milestones
- Endpoint deliverables
 - Artifacts, demonstrations, presentations, writeups
- Mimic tech startup

Project deliverables: Brainstorming

Goal: Explore, formulate, and justify project ideas

- P0: Individual: build team of like interest, complementary skills
 - Due Thursday in your introduction presentation
- P1: Team: get feedback to minimize unexpected challenges and maximize success
 - Starts next week

Brainstorming seeds

- Initial ideas:
 - Top-down application with multiple technology options
 - Traditional design flow
 - Bottom-up technology with multiple application options
 - "Silicon valley" design flow
 - Both directions will end up in the same place
 - ullet technologies o solution o application

Brainstorming seeds

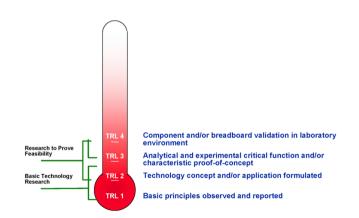
- Initial ideas:
 - Top-down application with multiple technology options
 - Traditional design flow
 - Bottom-up technology with multiple application options
 - "Silicon valley" design flow
 - Both directions will end up in the same place
 - $\bullet \ \ technologies \rightarrow solution \rightarrow application \\$

Brainstorming seeds

- Initial ideas:
 - Top-down application with multiple technology options
 - Traditional design flow
 - Bottom-up technology with multiple application options
 - "Silicon valley" design flow
 - Both directions will end up in the same place
 - technologies → solution → application

Top-down brainstorming

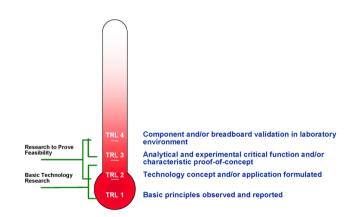
- Application pull, e.g.:
 - Netflix: Pain point = late fees for movie rentals
 - Technology option 1: DVDs by mail
 - Technology option 2: streaming downloads
 - Early Uber: Pain point = interaction with taxi drivers
 - Technology option 1: app-mediated taxi hailing
 - Technology option 2: ridesharing


Bottom-up brainstorming

- Technology push, e.g.:
 - Amazon: Technology = scaleable computation
 - Application option 1: product recommendations
 - Application option 2: cloud compute services
 - Recent Uber: Technology = gig workers
 - Application option 1: ridesharing
 - Application option 2: food delivery

Project deliverables: Pre-planning

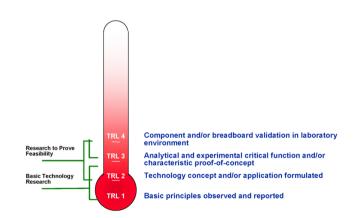
Goal: Define and **justify** a specific project scope


- P2: Background research, sources for data
- P3: One technology and application, with multiple pathways
- P4: Requirements Review (RR) / System Design Review (SDR)

Project deliverables: Pre-planning

Goal: Define and **justify** a specific project scope

- P2: Background research, sources for data
- P3: One technology and application, with multiple pathways
- P4: Requirements Review
 (RR) / System Design Review
 (SDR)



January 7, 2025 31/42

Project deliverables: Pre-planning

Goal: Define and **justify** a specific project scope

- P2: Background research, sources for data
- P3: One technology and application, with multiple pathways
- P4: Requirements Review (RR) / System Design Review (SDR)

January 7, 2025 31/42

Project pathways

- technologies \rightarrow solution \rightarrow application
- Solution will have multiple subsystem options
- E.g. Uber: gig workers for ridesharing
 - Build app to connect to connect passengers to drivers
 - Learn models of passenger distribution to command driver patrol routes
- By P4:
 - Identify all necessary subsystems (justify design choices)
 - Understand available design decisions (subsystem parameters)
 - Identify interactions between subsystems
 - Characterize unknowns, action items, and risk

January 7, 2025 32/42

Project pathways

- technologies \rightarrow solution \rightarrow application
- Solution will have multiple subsystem options
- E.g. Uber: gig workers for ridesharing
 - Build app to connect to connect passengers to drivers
 - Learn models of passenger distribution to command driver patrol routes
- By P4:
 - Identify all necessary subsystems (justify design choices)
 - Understand available design decisions (subsystem parameters)
 - Identify interactions between subsystems
 - Characterize unknowns, action items, and risk

January 7, 2025 32/42

Project pathways

- technologies \rightarrow solution \rightarrow application
- Solution will have multiple subsystem options
- E.g. Uber: gig workers for ridesharing
 - Build app to connect to connect passengers to drivers
 - Learn models of passenger distribution to command driver patrol routes
- By P4:
 - Identify all necessary subsystems (justify design choices)
 - Understand available design decisions (subsystem parameters)
 - Identify interactions between subsystems
 - Characterize unknowns, action items, and risk

January 7, 2025 32/42

Project milestone: Shark tank VC pitch

P5 Goal: Externally validate your preliminary justifications

- Explain to potential investors:
 - Project scope (technology, application, and pathways)
 - Resource allocation
 - Time
 - Personnel
 - Expected deliverables
 - Risk/reward analysis
- Initial investments reflect:
 - potential value of solution
 - thoroughness of pre-planning process

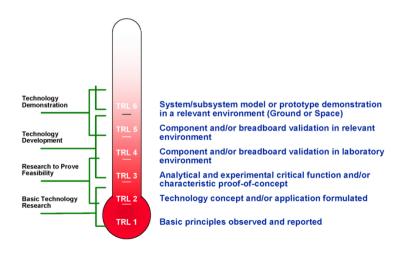
January 7, 2025 33/42

Project milestone: Shark tank VC pitch

P5 Goal: Externally validate your preliminary justifications

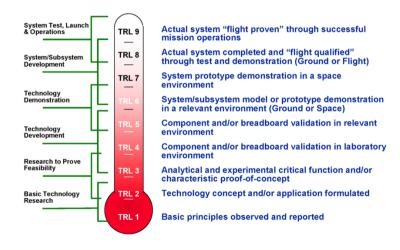
- Explain to potential investors:
 - Project scope (technology, application, and pathways)
 - Resource allocation
 - Time
 - Personnel
 - Expected deliverables
 - Risk/reward analysis
- Initial investments reflect:
 - potential value of solution
 - thoroughness of pre-planning process

January 7, 2025 33/42


Project deliverables: Planning

P6 Goal: Ensure successful project completion

- Preliminary Design Review (PDR) / Test Readiness Review (TRR)
 - Resolve most impactful unknowns
 - Mitigate most significant risks
 - Decompose project (hierarchically) into individual atomic tasks
 - Allocate / schedule all tasks and all resources
 - Ensure that dependencies are identified and accomodated
 - Manage internal and external uncertainty
 - Define incremental success criteria


January 7, 2025 34/42

Planning endpoint

January 7, 2025 35/42

Final outcome: TRL 7+ justification

January 7, 2025 36/42

Project planning goals - q1

- Achievable
 - Meet weekly deliverables and final goals
 - Culminate in interactive demo(s)
 - Justify final design
- Impactful
 - Add value beyond just this class
 - Engineer for social / societal good
- Ambitious
 - Exercise all your engineering skills
 - Prepare scaleable stretch goals
 - Build a project you can show off

January 7, 2025 37/42

Project planning goals – q1

- Achievable
 - Meet weekly deliverables and final goals
 - Culminate in interactive demo(s)
 - Justify final design
- Impactful
 - Add value beyond just this class
 - Engineer for social / societal good
- Ambitious
 - Exercise all your engineering skills
 - Prepare scaleable stretch goals
 - Build a project you can show off

January 7, 2025 37/42

Project planning goals - q1

- Achievable
 - Meet weekly deliverables and final goals
 - Culminate in interactive demo(s)
 - Justify final design
- Impactful
 - Add value beyond just this class
 - Engineer for social / societal good
- Ambitious
 - Exercise all your engineering skills
 - Prepare scaleable stretch goals
 - Build a project you can show off

January 7, 2025 37/42

Project deliverables: Weekly execution - q2

Goal: Ensure regular progress and allow course correction

- Progress update
 - Comparison of current status to PDR plan
 - Mitigation strategy for shortfalls
 - Refinement of future tasks
 - Clear action plan for upcoming week
- Investment change (stock trading) reflects confidence in plan and execution

January 7, 2025 38/42

Project deliverables: Weekly execution - q2

Goal: Ensure regular progress and allow course correction

- Progress update
 - Comparison of current status to PDR plan
 - Mitigation strategy for shortfalls
 - Refinement of future tasks
 - Clear action plan for upcoming week
- Investment change (stock trading) reflects confidence in plan and execution

January 7, 2025 38/42

Final milestones – q2

- Presentations
 - Sales pitch for product / results
 - Final Design Review (FDR) for process / methods
- Live demos
- Writeups
 - FDR documentation

Company exit (details to come)

January 7, 2025 39/42

Final milestones – q2

- Presentations
 - Sales pitch for product / results
 - Final Design Review (FDR) for process / methods
- Live demos
- Writeups
 - FDR documentation

Company exit (details to come)

January 7, 2025 39/42

Engineering philosophy

- Engineering is a combination of technology and communication. The grading policy reflects that
- The important contribution is the process; generating and analyzing results is necessary to validate the process
- Answer the What, How, Why of the results:
 - What did you accomplish?
 - How did you do it?
 - Why that way?
- ... and again for the process:
 - What is to be learned / understood from this?
 - How can this be generalized / applied to other problems?

• Why should anyone (everyone) care?

January 7, 2025 40/42

Engineering philosophy

- Engineering is a combination of technology and communication. The grading policy reflects that
- The important contribution is the process; generating and analyzing results is necessary to validate the process
- Answer the What, How, Why of the results:
 - What did you accomplish?
 - How did you do it?
 - Why that way?
- ... and again for the process:
 - What is to be learned / understood from this?
 - How can this be generalized / applied to other problems?
 - Why should anyone (everyone) care?

January 7, 2025 40/42

Engineering philosophy

- Engineering is a combination of technology and communication. The grading policy reflects that
- The important contribution is the process; generating and analyzing results is necessary to validate the process
- Answer the What, How, Why of the results:
 - What did you accomplish?
 - How did you do it?
 - Why that way?
- ... and again for the process:
 - What is to be learned / understood from this?
 - How can this be generalized / applied to other problems?

• Why should anyone (everyone) care?

January 7, 2025 40/42

Questions

Any questions on course and project expectations?

January 7, 2025 41/42

Next up

- Due before the start of this Thursday's class:
 - Introduction slides
- Thursday class:
 - Introductions, meet-and-greet, project team formation
- Due before the start of next Monday's class:
 - Video lecture A1 (engineering and society)

January 7, 2025 42/42